LOCATING ROOTS FOR NONLINEAR EQUATIONS
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GOAL.

e Introduce nonlinear equation.

e Learn about iterative methods for solving nonlinear equations

1 A Practical Problem: Floating Spherical Ball.

According to Archimedes, if a solid that is lighter than a fluid is placed in the
fluid, the solid will be immersed to such a depth that the weight of the solid is
equal to the weight of the displaced fluid. For example, a spherical ball of unit
radius will float in water at a depth H (which is the distance from the bottom
of the ball to the water line) determined by the density of the ball p,, assuming
that the density of the water p,, = 1. The volume of the submerged segment of
the sphere is
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To find the depth at which the ball floats, we must solve the equation that states
that the water density times the volume of the submerged segment is equal to
the ball density pp times the volume of the entire sphere, i.e.,

47
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which simplifies to
H3 —3H? +4p, =0 (3)

The depth H of physical interest lies between 0 and 2 since the ball is of unit
radius and H is measured upwards from the bottom of the ball. The question
here is how to find this depth H.

Exercise 1.1. Assume that p, = 1/3, by using the Intermedia Value Theorem,
show that there exists a root Hy, s.t. H3 — 3H3 + 4p, = 0.



2 Math Problem: Finding Roots

Definition 2.1. Let f be a real or complex valued function of a real or complex
variable. A number r, real or complex, for which

flr)=0 (4)
is called a root of that equation or a zero of the function f .

For example, the function f(x) = 2z — 4 has the zero r = 2. The function
g(z) = 22 — 32 + 2 has two roots r = 1,2. For our floating sphere problem,
the function f is given by f(H) = H® — 3H? + 4p;,. Thus, our floating sphere
problem is an example of the general root finding problem.

Another typical root finding problem is the problem of finding the points of
intersection of two curves. Let y = f(z) and y = g(z) be two continuous real-
valued functions. Geometrically, each function is a curve in the (z,y) plane. We
wish to find a point of intersection of these two curves. In other words, we need
to find an r such that

f(r)=g(r), (5)
f(r)—g(r)=0. (6)

Therefore, a point of intersection of the curves y = f(z) and y = g(z) is a zero
of the function h(z) = f(x) — g(x).

A first and natural question to ask about locating roots for nonlinear equa-
tions is

e Does there ever exist a root?

e If yes, how many roots does the equation have?

The following Intermediate-Value Theorem only partially answers the ques-
tions.

Theorem 2.2. (Intermediate-Value Theorem) Let f(x) be a continuous func-
tion on a close interval [a,b]. If

fa)f(b) <0, (7)
then there exists an r € (a,b), s.t. f(r)=0.

Remark 2.3. In general, the existence and the number of roots for nonlinear
equations is an open question. The Intermedia-Value Theorem is a sufficient
condition for the existence of a root, but not necessary condition.

Exercise 2.4. Could you think of an example, when the assumption of Intermedia-
Value Theorem is not satisfied, but the existence of root is still valid?



3 Numerical Approach: Iterative Methods

In this section, we discuss some iterative methods that can be applied to locate
roots of nonlinear equations. Iterative methods proceed by producing a sequence
of numbers that (hopefully) converges to a root of interest. The implementation
of any iterative technique requires that we deal with the following issues:

e Where do we start the iteration (how do we choose an initial guess)? How
do we design the iteration procedure?

e How do we know when to terminate the iteration?
e Does the scheme converge? If so, how fast?

Example 3.1. (Iterative scheme for calculating square root of m) We wish
to find the square root of any positive real number m. This question can be
formulated as a root nding problem as follows:

e let x = +/m.
e Take the square of both sides: 22 = m.
e Move m to the left-hand side: 2 — m = 0.

How do we design an algorithm to approximate /m? Let x,, be the current
approximation to /m. A related approximation would be

T, =—, (8>

since x,, -}, = m. Also due to the fact that z,, - ] = m, it is not clear which
one of z,, and z} will do a better job in approximating /m. A compromise is
the average of x,, and z}. In other words, we take

1 m
Tn4+1 = §(xn + a)a (9)

as the new approximation. With xy chosen appropriately, the relation is
an example of an iterative scheme.

Exercise 3.2. For m=3 and zy = 1, what are x1, x2, 37

3.1 Bisection Method
3.1.1 Description of the method

Suppose { is a continuous function that changes sign on the interval [a, b]. Then
it follows from the Intermediate Value Theorem that f must have at least one
zero in the interval [a,b]. This fact can be used to produce a sequence of even
smaller intervals that each bracket a zero of f . Specically, assume that

fla)f(b) <0 (10)



Then the function y = f(z) must intersect the x-axis. In other words, there
must be a point r € [a, b] such that f(r) = 0. Which point of [a, b] is the root? A
good guess would be the mid-point ¢y = (a+b)/2. With this guess, we compute
the value of f at the mid-point ¢y. There are two possible cases:

e f(cp) = 0: This is fortuitous - we have found the zero, namely, cq.

e f(co) # 0: In this case, we must have either f(a)f(co) < 0 or f(co)f(b) <
0.

In the second case, we conclude that there must be a zero in either [a, ¢g] or
[co, b]. In either case, we are left with a half-sized bracketing interval. We repeat
the same procedure to come up with an even smaller interval that brackets a
zero of f , and denote by ¢; the mid-point of this new subinterval. Repeated use
of this procedure will produce a sequence of approximations

Cp,C1,C2, " - (]‘1)
which converges to a zero of the function f; that is,

lim ¢, =7 (12)
n—oo
The following is a segment of MATLAB code that implements the bisection
method in which the halving process can continue until the current interval is
shorter than a designated positive tolerance delta.

function root=BisectionM(f, a, b, delta, nmax)
fa = f(a);
fb = £(b);
if faxfb > O
disp(’Initial interval does not bracket a root’)
return
end
itcount=0;
while (abs(b-a) > delta & itcount<nmax)
itcount=itcount+1;
c=(a+b)/2;
fe=f(c);
if faxfc<=0
% There is a root in the interval [a,c]
b=c;
fb=fc;
% Otherwise, there is a root in the interval [c,b]
else
a=c;
fa=fc;
end



end
root=(a+b)/2;
disp(sprintf(’itcount = %i’,itcount))

EXAMPLE 1. Find the largest root of
fxy=a®—2z—-1=0

accurate to within delta = 0.001 using no more than 15 iterations. Please check
that this root lies in the interval [1,2]. Then we may choose a = 1 and b = 2,
and obtain the following.

>> f=inline(’x"6-x-1’)

Inline function:
f(x) = x"6-x-1

>> root = BisectionM(f,1.,2.,0.001,15)
itcount 10

root =

1.1343

It should be noted that the time required by a root-finder like BisectionM()
is proportional to the number of function evaluations. The arithmetic that takes
place outside of the function evaluations is typically insignificant.

Exercise 3.3. Use BisectionM() or your own code to solve the floating sphere
problem in which the sphere’s density is 1/3.

3.1.2 The convergence of the bisection method

Consider the bracket [a,,b,] at the iterative step n. Since [a,, b,] was obtained
from [a,,—1,b,—1] by the halving procedure, then with ¢, = (a,, +b,,)/2 we have

1 1 1
|Cn —7’| < §|bn _an| = Z‘bnfl _an71| == ﬁ(b_a)v (13)

where (b—a) is the length of initial interval and r is one of the roots bracketed in
[@n, by]. In summary, if the bisection method is applied to a continuous function
f on an interval [a,b], where f(a)f(b) < 0, then, after n steps, an approximate
root will have been computed with error at most 1 (b— a).



Estimate is an example of linear convergence of iterative methods. A
sequence {x,} is said to converge linearly to a limit r if there is a constant C in
the interval [0,1) such that

@1 — 1] < Clan — 11, (14)
for n > 0. Then
|1 — 7| S Cloy —7| < - < O™ g — 1l (15)
Thus it is a consequence of linear convergence that
|z, — 7] < AC™, C €(0,1] (16)

The sequence produced by the bisection method obeys as we see from .

A disadvantage of the bisection method is that it applies only to functions of
one variable. Also, there are cases where the method is not applicable. (Please
provide an example of such a case.)

3.2 Newton’s Method

Newtons method is a procedure that approximates the zeros of a function f by
a sequence of linearizations, and takes the form

f(zn)
Tp+l = Tn — ) (17)
f'(wn)
for n =0,1,2,--- Here x( is an initial guess that must be chosen carefully to

ensure convergence of the iterative scheme eq. .

3.2.1 Geometric derivation of Newton’s method

Our objective is to approximate r which satisfies f(r) = 0. Graphically, the
roots of the function f(x) = 0 are points of intersection of the curve y = f(x)
with the r—axis. Let x, be an approximation to r at step n. We wish to
update x,, with a better approximation called z,41. A geometric approach to
determining x,,1 is given as follows:

e Draw the tangent line of the curve y = f(x) at the point (x,, f(x,)). The
slope of the tangent line at point (z,, f(z,)) is f'(z,). The equation of a
straight line, passing by the point (2, f(z,)) with slope f'(z,) is

e Find the intersection of the tangent line with the z—axis. This point
of intersection is chosen as the new approximation z,.1. To find the
intersection of the tangent line with the x—axis, we set y = 0 in equation
(18) and solve for z. This leads to

f(zn)

T T T )
n

(19)



Exercise 3.4. Please draw a picture to illustrate Newton’s method. Be sure to
carefully label your picture.
3.2.2 Algebraic derivation of Newton’s method

Newtons method can also be derived in the following way using the Taylor series
of a function of one variable. Let z,, be the current approximation to a zero r
of the function f(z). The error, denoted by h, is given by

h=r—ua,, (20)

from which it follows that
r=x, + h. (21)

Since r is a zero of f(x), we have
flxz, +h)=0.

Using Taylor series at x,,, we arrive at the following,

Fn) +1f (@) + @) + O0) = 0. (22)

If equation is viewed as an equation in terms of the variable &, by solving
for h from this equation we would obtain a true root of the function f. Un-
fortunately, this is impossible in practice. Therefore, we take only the first two
terms of the series, which yields a linear equation to solve for h. This linear
equation is

f(zn) +hf'(zn) =0, (23)
with solution )
h= _f/(xn). (24)

Since we truncated the series in h, this is generally different from the true
solution. However, the corrected solution

Tpal = Tp +h=x, — (25)

provides a better approximation to the solution of f(x) = 0. This is the New-
ton’s method.

3.2.3 Finding the v/2 by Newton’s method

Recall that the problem of finding the square root of 2 can be expressed as a
solution of
2 —2=0, (26)



which is equivalent of locating zeros of f(z) = x? — 2. Since f/(x) = 2z, the
Newton’s method is given by

Tp xf -2 1 2
T+l = Tn — ]{’((xn)) =Tpn — 2an = §(xn + a)v (27)

which is equation .

The following is a segment of MATLAB code that implements the Newton’s
method in which the iterative process can continue until the two successive
approximations are close enough (tolerance delta).

function root=NewtonM(f, fderiv, x0, delta, nmax)

error =1;
itcount=0;
while abs(error) > delta & itcount<nmax
fx=f(x0);
dfx=fderiv(x0) ;
if dfx == 0;
disp(’The derivative is zero. Stop.’)
return
end

x1=x0-fx/dfx;
error = x1-x0;
x0=x1;
itcount=itcount+1;
end
if itcount >=nmax
disp(’Maximum number of iterations exceeded’)
root=x1;
else
disp(sprintf(’itcount = %i’,itcount))
root=x1;
end

Using the initial guess x0 as the starting point, we carry out a maximum of nmax
iterations of Newton’s method. Procedures must be supplied for the external
functions f and f’. The parameter delta is used to control the convergence
and is related to the accuracy desired or to the machine precision available.

EXAMPLE 2. Solve the problem in Example 1 using Newton’s method with
o = 1.

>> f=inline(’x"6-x-17)



Inline function:
f(x) = x"6-x-1

>> fder=inline(’6*x~5-17)
fder =

Inline function:
fder(x) = 6*x°5-1

>> root = NewtonM(f,fder,1.,0.001,6)
itcount 4

root =
1.1347

>> root = NewtonM(f,fder,1.,0.001,3)
Maximum number of iterations exceeded

root =

1.1349

Exercise 3.5. Using Newton’s method, solve the floating sphere problem
in which the sphere’s density is 1/3. Be sure to clearly indicate your choice of
initial guess(es). Compare your results with those obtained using the bisection
method.

3.2.4 Convergence of Newton’s method

To study the convergence of Newtons method, we derive a recursive relation for
the error e,, = r — x,. From Newtons method, by subtracting both sides of
equation from r, we obtain

— f(zn) _ ent'(wn) + f(wn)
et = et Pl 28)

It following from Taylor’s Theorem that

F) = flen) + (= ) (@) + 50— 20)* 1" (60), (29)
with &, lies between xz,, and r. Since f(r) = 0, we have
Fln) + enf'(en) = 362" (E) (30)



Combining equation and gives,

(31)

Assume that f/(r) # 0, that is, r is a simple zero of f . Then, there exists a
neighborhood of r in which f’ is nonzero. In other words, there exists a dg > 0
such that

|f'(z)] > co >0, whenever |x—r|<dp. (32)
Also assume that the second order derivative is bounded in this g neighborhood.
Thus there is a constant M such that

1f"(m)
2 f'(x)

for any n, x € (r—do,7+dp). Thus from this bound and equation (31), we have

| < M, (33)

lent1] < Mlen|?, (34)

which is what we would expect if Newtons method converges quadratically. This
result can be sued to give a mathematical proof of the convergence of Newtons
method. Specically, we have the following theorem.

Theorem 3.6. If f, f' and f"” are continuous in a neighborhood of a simple
root v of f , then there is a § > 0 such that, if the initial guess x¢ satises
|r — xo| <9, then all subsequent approximations x,, satisfy the same inequality,
and converge to r quadratically.

In short, Newtons method always converges when the initial guess is ‘suffi-
ciently’ close to the root.

The popularity of Newtons method is essentially based upon the fact that it
converges quadratically. This is sometimes described by saying that the number
of accurate digits in the answer doubles with each iteration. Quadratic conver-
gence is more properly described as an asymptotic property, however, so that,
in general, we cannot expect a doubling in the number of accurate digits on
early iterations.

3.2.5 Choice of initial guess xg.

When using Newtons method, it can be difficult to decide on a suitable initial
guess. If x( is not close enough to the root, Newtons method will either diverge
or converge to another root. It is sometimes helpful to have some insight into
the shape of the graph of the function to guide the selection of an initial guess.
Often the bisection method is used initially to obtain a suitable starting point,
and Newtons method is then used to improve the precision.

10



4 The Secant Method

In comparison to Newton’s method, the secant method uses the intersection of
a secant line with the z-axis to update the approximation x,. The correspond-
ing iterative scheme is derived as follows. Assume that z,_; and z, are two
approximations to the exact root r. We draw a secant line using the points
(zn—1, f(zn-1)) and (zy, f(z,)) whose equation is given by

Y- f(xn) = m(x - Zn), (35)
where

is the slope of the straight line. The point of intersection of the line with
the z-axis, denoted by z,,1, is given by
_f(mn) = m(xn+1 - xn)>

. f(xn).

m

Tnyl = Tp —
Substituting for m from
f('rn)(xn - -Tn—l)

T ) = fan )

Note that the secant method needs two initial points to start the iteration,
while Newton’s method needs only one. In addition, it can be proved that New-
ton’s method converges more rapidly than the secant method. But the secant
method does not involve the derivative of the function. In some applications
when the derivative may not be available or is expensive to evaluate, the secant
method is a viable alternative to Newton’s method.

Exercise 4.1. Using the secant method, solve the floating sphere problem
in which the sphere’s density is 1/3. Be sure to clearly indicate your choice
of initial guess(es). Compare your results with those obtained using Newton’s
method and the bisection method. In addition to your results, please provide
your code, in Matlab, clearly commented.

5 Reading Assignments/References:

1. About bisection method: follow the link http://en.wikipedia.org/wiki/
Bisection_method.

2. About Newton’s method: follow the link http://en.wikipedia.org/
wiki/Newton’s_method.

3. About secant method: follow the link http://en.wikipedia.org/wiki/
Secant_Method.
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