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GOAL.

• Understand why numerical methods are necessary for the evaluation of
integrals.

• Master basic methods for numerical integration.

• Understand what is the degree of precision and its uses.

• Understand the basics of Gaussian quadrature.

1 Introduction

Consider the definite integral

I(f) ≡
∫ b

a
f(x)dx,

where f(x) is a continuous function on the closed interval [a, b], so that the inte-
gral I(f) exists. Approximating I(f) numerically is called numerical integration
or quadrature.

There are a number of reasons for studying numerical integration. Let us
recall that the antiderivative of f(x) is a function F (x) such that

F ′(x) = f(x).

From elementary calculus, we know that

I(f) = F (x)
∣∣b
a

= F (b)− F (a).

Therefore, if the antiderivative of f(x) is easy to compute and has an elementary
representation, then the evaluation of I(f) becomes trivial. But in practice, the
antiderivative of f may not be known or may not be elementary. Furthermore,
the integral may not be available because the function f(x) may be defined
by values in a table or by a subprogram. Or definite integrals must be ap-
proximated as part of a more complicated numerical scheme, such as one for
the solution of differential equations by finite element methods, an advanced
numerical technique for solving partial differential equations frequently used in
practice.

As a particular example of where the evaluation of an integral appears,
consider the analysis of measurement errors in scientific experiments. Suppose
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that a surveyor is measuring mountain terrain as part of a highway construction
project. The equipment is accurate to the nearest foot (say). What is the
probability that a particular measurement overestimates the true value by less
than 2 feet? If the measurement errors have a standard normal distribution,
that is, they follow a “bell” curve, then (as you have learned in Probability and
Statistics) the desired probability is given by the definite integral

1√
2π

∫ 2

0
e−x2/2 dx.

There is no closed form expression for the value of this integral, and it must be
estimated using numerical methods.

A basic principle in numerical analysis is that if we cannot do what we want
with a given function f(x), we approximate it with a function for which we
can. Often the approximating function is an interpolating polynomial. Using
this principle, we develop efficient methods for computing approximations to
the integral I(f) using only values of the integrand f(x) at points x ∈ [a, b],
and study their errors. When approximating functions, we found that piecewise
polynomial interpolants have advantages over polynomial interpolants, and the
same is true in this context. In a way, piecewise polynomials are more natural
for numerical integration because using such a function amounts to breaking up
the interval of integration into pieces and approximating by a polynomial on
each piece.

2 Integrals and Rules

To approximate the integral I(f) numerically, we integrate piecewise polyno-
mial approximations of f(x) on the interval [a, b]. The very first thing to do
in this approximation procedure is to partition the interval [a, b] into n equal
subintervals [xi−1, xi], i = 1, 2, · · · , n, where xi = a + ih, i = 0, 1, · · · , n, and
h = xi − xi−1 ≡ (b − a)/n, and use the additive property of integrals to
obtain

I(f) =
∫ x1

x0

f(x)dx +
∫ x2

x1

f(x)dx + · · · +
∫ xn

xn−1

f(x)dx. (1)

As a first example, we consider a piecewise constant approximation on each
subinterval [xi−1, xi]. On the interval [xi−1, xi], we approximate f(x) by its
value at the midpoint of the interval, so that
∫ xi

xi−1

f(x)dx ≈
∫ xi

xi−1

f(xi−1/2)dx = (xi−xi−1)f(xi−1/2) = hf(xi−1/2) ≡M1(f),

which is called the midpoint rule; the quantity hf(xi−1/2) is the area of the
rectangle of width h = xi−xi−1 and height f(xi−1/2). Hence, using the additive
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property (1), we obtain the composite midpoint rule:

I(f) =
∫ x1

x0

f(x)dx +
∫ x2

x1

f(x)dx + · · · +
∫ xn

xn−1

f(x)dx (2)

(3)
≈ hf(x1/2) + hf(x3/2) + · · · + hf(xn−1/2) (4)

= h
n∑

i=1

f(xi−1/2) (5)

≡ Mn(f). (6)

3 Quadrature Rules

3.1 A general quadrature rule

Generally, a quadrature rule (such as the midpoint rule) has the form

R(f) ≡
n∑

i=0

wif(xi),

for given nodes x0 < x1 < · · · < xn and weights w0, w1, · · · , wn.
We need some properties of the definite integral I(f) and of the quadrature

rule R(f). First, the integral I(f) is a linear functional1; that is,

I(αf + βg) = αI(f) + βI(g), (7)

for any constants α and β and any functions f and g for which the integrals
I(f) and I(g) exist. In integral notation, this equation provides the standard
linearity result for integrals,

∫ b

a
[αf(x) + βg(x)]dx = α

∫ b

a
f(x)dx + β

∫ b

a
g(x)dx.

Similarly, a quadrature rule R(f) is a linear functional, that is,

R(αf + βg) = αR(f) + βR(g),

or, in summation notation,
n∑

i=0

ωi[αf(xi) + βg(xi)] = α
n∑

i=0

ωif(xi) + β
n∑

i=0

ωig(xi).

As we have already mentioned, to approximate a definite integral I(f) where we
do not know an antiderivative for f(x), a good choice is to integrate a simpler

1A functional maps functions to numbers. A definite integral provides a classic example of
a functional; this functional assigns to each function a number that is the definite integral of
that function.
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function q(x) that approximates the function f(x) well and whose antiderivative
we do know. From the linearity of the functional I(f), we have

I(q) = I(f + [q − f ]) = I(f) + I(q − f).

Thus the error in approximating the true integral I(f) by the integral of the
approximation I(q) can be expressed as

I(q)− I(f) = I(q − f);

that is, the error in approximating the definite integral of the function f(x)
by using the definite integral of the approximating function q(x) is the definite
integral of the error in approximating f(x) by q(x). If q(x) approximates f(x)
well, that is, if the error q(x)−f(x) is in some sense small, then the error I(q−f)
in the integral I(q) approximating I(f) will be small because the integral of a
small function is always relatively small.

In the following subsections, particular examples of the general quadrature
rule are considered.

3.2 Midpoint rule (Revisited)

Consider the definite integral

I(f) =
∫ b

a
f(x)dx.

Interpolation can be used to determine polynomials q(x) that approximate the
function f(x) on [a, b]. As we have seen, the choice of the function q0(x) as a
polynomial of degree n = 0 (that is, a constant approximation) interpolating
the function f(x) at the midpoint x = (a + b)/2 of the interval [a, b] gives the
midpoint rule.

EXAMPLE 1. Using the midpoint rule, approximate the integral

I =
∫ 1

0

dx

1 + x
.

The true value is I = log(2) ≈ 0.693147. Using the midpoint rule, we obtain

M1 = (1− 0)
[

1
1 + 1

2

]
=

2
3

= 0.666.....

This is in error by
M1 − I ≈ −0.0265.
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3.3 Trapezoidal rule

Consider the function q1(x) which is the polynomial of degree one that interpo-
lates the function f(x) at the integration interval endpoints x = a and x = b;
that is, the polynomial q1(x) is chosen so that the interpolating conditions

q1(a) = f(a), q1(b) = f(b)

are satisfied. The Lagrange form of this interpolating straight line is

q1(x) = %(1)1 (x)f(a) + %(1)2 (x)f(b),

where the Lagrange basis functions are

%(1)1 (x) =
x− b

a− b
, %(1)2 (x) =

x− a

b− a
. (8)

Since the function values f(a) and f(b) are constants, from the linearity condi-
tion (7), we obtain

I(q1) = I(%(1)1 )f(a) + I(%(1)2 )f(b),

and since
I(%(1)1 ) = I(%(1)2 ) =

b− a

2
,

we have
I(q1) = w1f(a) + w2f(b),

where
w1 = w2 =

b− a

2
.

This is the so-called trapezoidal rule

T1(f) ≡ b− a

2
f(a) +

b− a

2
f(b) =

b− a

2
[f(a) + f(b)] .

EXAMPLE 2. Using the trapezoidal rule, approximate the integral

I =
∫ 1

0

dx

1 + x
.

We obtain
T1 =

1
2

[
1 +

1
2

]
=

3
4

= 0.75.

This is in error by
T1 − I ≈ 0.0569.
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3.4 Errors in the Trapezoidal and Composite Trapezoidal
Rules

Next, we need to see precisely how the error in approximating a definite integral
I(f) depends on the integrand f(x). We use the trapezoidal rule to develop this
analysis.

If the second derivative f ′′(x) exists and is continuous on [a, b], the error in
the trapezoidal rule is

T1(f)− I(f) = I(q1)− I(f) (9)
= I(q1 − f) (10)

=
∫ b

a
{the error in linear interpolation} dx (11)

= −
∫ b

a

(x− a)(x− b)
2

f ′′(ξx)dx (12)

=
∫ b

a

(x− a)(b− x)
2

f ′′(ξx)dx, (13)

where ξx is an unknown point in the interval [a, b] whose location depends both
on the integrand f(x) and on the location x. Here we have used the formula for
the error in polynomial interpolation developed in Chapter 3. Now, since

(x− a)(b− x) ≥ 0, x ∈ [a, b],

we can apply the Mean Value Theorem for Integrals2 to obtain

T1(f)− I(f) =
∫ b

a

(x− a)(b− x)
2

f ′′(ξx)dx (14)

(15)

= f ′′(η)
∫ b

a

(x− a)(b− x)
2

dx (16)

(17)

=
(b− a)3

12
f ′′(η), (18)

where η is an (unknown) point located in the open interval (a, b) that depends
only on the integrand f(x). Note that the point η is necessarily unknown and
must depend on the integrand f(x) otherwise the formula

I(f) = T1(f)− (b− a)3

12
f ′′(η)

2Mean Value Theorem for Integrals. If the functions f(x) and w(x) are continuous
on the closed interval [a, b], and the function w(x) is nonnegative on the open interval (a, b),
then, for some point η ∈ [a, b],

Z b

a
w(x)f(x)dx =

Z b

a
w(x)dx

ff
f(η).
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could be used to evaluate any integral I(f) exactly from explicit evaluations of
f(x) and of its second derivative f ′′(x).

Now we develop a composite quadrature formula for
∫ b

a
f(x)dx

using the trapezoidal rule. Recall that h = xi − xi−1, and approximate
∫ xi

xi−1

f(x)dx

by the trapezoidal rule:
∫ xi

xi−1

f(x)dx ≈ xi − xi−1

2
[f(xi−1) + f(xi)] (19)

=
h

2
[f(xi−1) + f(xi)] (20)

= T1(f). (21)

Thus the error is

T1(f)− I(f) =
h

2
[f(xi−1) + f(xi)]−

∫ xi

xi−1

f(x)dx (22)

=
h3

12
f ′′(ηi), (23)

where ηi is an unknown point in (xi−1, xi), and hence in (a, b). Then

I(f) ≡
∫ b

a
f(x)dx (24)

=
n∑

i=1

∫ xi

xi−1

f(x)dx (25)

≈
n∑

i=1

h

2
[f(xi−1) + f(xi)] (26)

=
h

2

[
f(x0) + 2

n−1∑

i=1

f(xi) + f(xn)

]
(27)

≡ Tn(f), (28)

which is the composite trapezoidal rule. Assuming that f ′′(x) is continuous
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on the interval [a, b], the error in the composite trapezoidal rule is

Tn(f)− I(f) =
n∑

i=1

h

2
[f(xi−1) + f(xi)]−

∫ b

a
f(x)dx (29)

=
n∑

i=1

h

2
[f(xi−1) + f(xi)]−

n∑

i=1

∫ xi

xi−1

f(x)dx (30)

=
n∑

i=1

(
h

2
[f(xi−1) + f(xi)]−

∫ xi

xi−l

f(x)dx

)
(31)

=
h3

12

n∑

i=1

f ′′(ηi) (32)

=
h3

12
nf ′′(η), (33)

for some unknown point η ∈ (a, b), on using the Generalized Mean Value The-
orem for Sums.3 Since nh = (b− a), this expression reduces to

Tn(f)− I(f) =
h2

12
(b− a)f ′′(η). (34)

Thus, as n→∞ and h→ 0 simultaneously in such a way that nh = (b−a), the
error in the composite trapezoidal rule decreases like O(h2); that is, the error
is bounded by Ch2, where C is a positive constant.

EXAMPLE 3. Using the composite trapezoidal rule with two subintervals,
approximate the integral

I =
∫ 1

0

dx

1 + x
.

Then

T2 =
1
2

[
1 + 2

3

2

]
+

1
2

[ 2
3 + 1

2

2

]
=

17
24
≈ 0.70833.

and
T2 − I ≈ 0.0152.

3Generalized Mean Value Theorem for Sums. If the function f(x) is continuous on
the closed interval [a, b], the weights {wi}n

i=0 are all nonnegative numbers with

nX

i=0

wi > 0,

and the points {xi}n
i=0 all lie in [a, b], then, for some point η ∈ [a, b],

nX

i=0

wif(xi) =

(
nX

i=0

wi

)
f(η).

.
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The error in T2 is about 1
4 of that for T1 in Example 2. This is the error behavior

that one would expect in general, because the error in Tn is O(h2), so that when
h is halved, the error is reduced by a factor of 4.

3.5 Errors in the Midpoint and Composite Midpoint Rules

It can be shown that

M1(f)− I(f) = hf(xi−1/2)−
∫ xi

xi−1

f(x)dx = −h3

24
f ′′(ηi),

where ηi is an unknown point in (xi−1, xi). (The proof of this result is more
involved than the corresponding result for T1(f), and is omitted.) It then follows
that

Mn(f)− I(f) = −h2

24
(b− a)f ′′(η), (35)

for some unknown point η ∈ (a, b). Note that if f ′′(x) is approximately constant
on the interval [a, b], then, from (34) and (35),

|Mn(f)− I(f)| ≈ 1
2
|Tn(f)− I(f)|. (36)

EXAMPLE 4. Using the composite midpoint rule with two subintervals,
approximate the integral

I =
∫ 1

0

dx

1 + x
.

Then
M2(f) =

1
2

[
1

1 + 1
4

+
1

1 + 3
4

]
=

24
35

= 0.685714.

This is in error by
M2(f)− I(f) ≈ −0.0074,

which, in absolute value, is approximately half of the error in T2(f), as one
might expect from (36) with n = 2. (Compare the errors in Examples 1 and 2.)

3.6 Interpolatory Quadrature: Simpson’s Rule

Rather than adding points in the interval [a, b] by making composite versions of
simple rules such as the midpoint and trapezoidal rules, we may also generalize
these rules by adding more interpolation points hence using a higher degree
interpolating polynomial. Let x0 < x1 < · · · < xn and qn(x) be the polynomial
of degree less than or equal to n interpolating the data {(xi, f(xi))}n

i=0. The
Lagrange form of the interpolating polynomial is given by

qn(x) =
n∑

i=0

f(xi)%
(n)
i (x),
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where the Lagrange basis functions %(n)
i (x) are defined by

%(n)
i (x) =

n∏

j=0,j #=i

x− xj

xi − xj
, i = 0, . . . , n.

Exploiting linearity, we have

I(f) ≈ I(qn) = I(
n∑

i=0

f(xi)%
(n)
i ) =

n∑

i=0

I(%(n)
i )f(xi) =

n∑

i=0

wif(xi) ≡ R(f),

where the weights

wi = I(%(n)
i ) =

∫ b

a
%(n)
i (x)dx.

R(f) is called an interpolatory quadrature rule.
When the nodes xi are equally spaced in [a, b] so that xi = a + ih where

h ≡ (b − a)/n, we obtain the so-called closed (n + 1)–point Newton–Cotes
rule. Note that the closed (n+1)–point Newton-Cotes rule includes the interval
endpoints x0 = a and xn = b. In contrast, the open (n − 1)–point Newton–
Cotes rule has the points x1, x2, · · · , xn−1 as nodal points; it does not include
the endpoints x0 = a and xn = b in the nodal list. It is easy to see that the
open 1–point Newton–Cotes rule is the midpoint rule, and the closed 2–point
Newton–Cotes rule is the trapezoidal rule. The closed 3–point Newton–Cotes
rule gives the well-known Simpson’s rule:

∫ b

a
f(x)dx ≈ b− a

6

[
f(a) + 4f

(
a + b

2

)
+ f(b)

]
≡ S2(f). (37)

Recall that R(f) = I(q), so R(f) − I(f) = I(q) − I(f) = I(q − f). Hence,
R(f) does not accurately approximate I(f) when I(q − f) is large, which can
occur only when q − f is large. This can happen when using many equally
spaced interpolation points. Integrating the polynomial interpolant used there
to approximate

f(x) =
1

1 + x2

would correspond to using an 11–point closed Newton–Cotes rule to approxi-
mate

∫ 5

−5
f(x)dx,

with a resulting large error.
However, q−f can be large when I(q−f) is zero. Consider the errors in the

midpoint rule and Simpson’s rule. The midpoint rule is derived by integrating
a constant interpolating the data

((a + b)/2, f((a + b)/2)).
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This interpolant is exact only for constants, so we would anticipate that the
error would be zero only for constant integrands. But, like the trapezoidal
rule, the midpoint rule is exact for all straight lines. How can a polynomial
approximation q(x) of f(x) that is exact for only constants yield a quadrature
rule that is also exact for all straight lines?

Similarly, Simpson’s rule is derived by integrating a quadratic interpolant of
the data

(a, f(a)), ((a + b)/2, f((a + b)/2)), (b, f(b)).

This quadratic interpolant is exact for all functions f(x) that are quadratic
polynomials, yet the quadrature rule derived from integrating this interpolant
is exact for all cubic polynomials. How can a polynomial approximation q(x) of
f(x) that is exact for only quadratic polynomials yield a quadrature rule that
is also exact for all cubic polynomials?

Notice that, in both of these cases, I(q − f) = 0 when q(x) − f(x) is not
identically zero and, indeed, q(x)− f(x) is potentially large.

These quadrature rules exhibit superconvergence; that is, the rules integrate
exactly all polynomials of a certain higher degree than is to be anticipated from
their construction. Indeed, all Newton–Cotes rules (closed or open) with an
odd number of points exhibit superconvergence; that is, they each integrate
exactly all polynomials of degree one higher than the degree of the polynomial
integrated to derive the rule. As we shall see later, Gaussian quadrature yields
the ultimate in superconvergent quadrature rules.

EXAMPLE 5. Using Simpson’s rule, approximate the integral

I =
∫ 1

0

dx

1 + x
.

Then
S2 =

1
6

[
1 + 4

2
3

+
1
2

]
=

25
36
≈ 0.69444.

The error is
S2 − I = S2 − log(2) ≈ 0.00130.

To compare with the trapezoidal rule, we use T2 from the previous example,
since the number of function evaluations is the same for both T2 and S2. The
error in S2 is smaller than that for T2 by a factor of about 12, a significant
increase in accuracy.

4 Degree of Precision

In the following, we present an alternative way to derive quadrature rules.
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4.1 Degree of Precision

Definition (Degree of precision (DOP)) The quadrature rule

R(f) =
n∑

i=0

wif(xi)

approximating the definite integral

I(f) =
∫ b

a
f(x)dx

has DOP = m if ∫ b

a
f(x)dx =

n∑

i=0

wif(xi)

whenever f(x) is a polynomial of degree at most m, but

∫ b

a
f(x)dx )=

n∑

i=0

wif(xi)

for some polynomial f(x) of degree m + 1.
An equivalent definition of DOP is given in the following.

Definition The quadrature rule

R(f) =
n∑

i=0

wif(xi)

approximating the definite integral

I(f) =
∫ b

a
f(x)dx

has DOP = m if ∫ b

a
xrdx =

n∑

i=0

wix
r
i ,

for r = 0, 1, · · · , m, but, for r = m + 1,
∫ b

a
xrdx )=

n∑

i=0

wix
r
i .

If a quadrature rule Rhi(f) has a higher DOP than another rule Rlo(f), then
Rhi(f) is generally considered more accurate than Rlo(f) because it integrates
exactly higher degree polynomials and hence potentially integrates exactly more
accurate polynomial approximations to f(x).
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The DOP concept may be used to derive quadrature rules directly. With
the points xi, i = 0, 1, · · · , n, given, consider the rule

I(f) =
∫ 1

−1
f(x)dx ≈

n∑

i=0

wif(xi) = R(f).

Note that we have chosen a special (canonical) interval [−1, 1] here. The weights,
wi, i = 0, 1, · · · , n, are chosen to maximize the DOP, by solving the following
equations of precision (starting from the first and leaving out no equations):

∫ 1

−1
1dx =

n∑

i=0

wi, (38)

∫ 1

−1
xdx =

n∑

i=0

wixi, (39)

... (40)
∫ 1

−1
xmdx =

n∑

i=0

wix
m
i , (41)

for the weights wi. When we reach an equation that we cannot satisfy, for
example, we have satisfied equations the first (m + 1) equations but we cannot
satisfy the next equation so that

∫ 1

−1
xm+1dx )=

n∑

i=0

wix
m+1
i ,

then the DOP corresponds to the last power of x for which we succeeded in
satisfying the corresponding equation of precision, so that DOP= m.

EXAMPLE 1. Suppose that the quadrature rule

R(f) = w0f(−1) + w1f(0) + w2f(1)

approximates the integral

I(f) =
∫ 1

−1
f(x)dx.

What choice of the weights w0, w1 and w2 maximizes the DOP of the rule?

Solution: Create a table listing the values of I(xj) and R(xj) for j = 0, 1, 2, . . ..

j I(xj) R(xj)
0 2 w0 + w1 + w2

1 0 −w0 + w2

2 2
3 w0 + w2

3 0 −w0 + w2

4 2
5 w0 + w2
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To determine the three free parameters, w0, w1 and w2, we solve the first three
equations of precision (to give us DOP≥ 2). That is, we solve I(xm) = R(xm)
for m = 0, 1, 2:

2 = w0 + w1 + w2 (I(1) = R(1))
0 = −w0 + w2 (I(x) = R(x))
2
3 = w0 + w2 (I(x2) = R(x2))

These three equations have the unique solution:

w0 = w2 =
1
3
, w1 =

4
3
,

which corresponds to Simpson’s rule. However, this rule has DOP = 3 not DOP
= 2 because, for this choice of weights, I(x3) = R(x3) also; that is, the first four
equations of precision are satisfied. (Indeed, I(xm) = R(xm) = 0 for all odd
powers m ≥ 0.) DOP= 3 because if DOP= 4 then the equations w0 + w2 = 2

3
and w0 + w2 = 2

5 would both be satisfied, a clear contradiction.

5 Transformation from a Canonical Interval

Question. How to transform a quadrature rule for a canonical interval of
integration, chosen here as [−1, 1], to a quadrature rule on a general interval of
integration [a, b]?

Denote the variable x! ∈ [−1, 1], and x ∈ [a, b]. A linear change of variable
(mapping) from x! to x is,

x = g(x!) = αx! + β.

Since x(−1) = a and x(1) = b

α =
b− a

2
, β =

a + b

2
,

x = g(x!) =
b− a

2
x! +

a + b

2
.

so the transformation g(x!) maps the canonical interval onto the interval of
interest.

The standard change of variable formula of integral calculus using the trans-
formation, x = g(x!) is

∫ b

a
f(x)dx =

∫ 1

−1
f(g(x!))dg(x!) =

∫ 1

−1
f(g(x!))g′(x!)dx!.

For this transformation, we have

g′(x!) =
b− a

2
,
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and the change of variable formula reads
∫ b

a
f(x)dx =

b− a

2

∫ 1

−1
f

(
b− a

2
x! +

b + a

2

)
dx!.

Now, assume that for the canonical interval [−1, 1] we have a quadrature rule

I∗(u) =
∫ 1

−1
u(x!)dx! ≈

n∑

i=0

w∗
i u(x∗i ) = R∗(u).

Then, substituting for u(x!) = f(g(x!)) ≡ (f ◦ g)(x!), we have

I(f) ≡
∫ b

a
f(x)dx =

b− a

2

∫ 1

−1
f

(
b− a

2
x! +

b + a

2

)
dx!

=
b− a

2
I∗(f ◦ g)

≈ b− a

2
R∗(f ◦ g)

=
b− a

2

n∑

i=0

w∗
i f

(
b− a

2
x∗i +

b + a

2

)

=
n∑

i=0

wif(xi)

≡ R(f),

where in R(f) the weights

wi =
b− a

2
w∗

i , (42)

and the points

xi =
b− a

2
t∗i +

b + a

2
. (43)

Remark 5.1. The DOP of the transformed quadrature rule R(f) is the same
as the DOP of the canonical quadrature rule R∗(f). The error term for the
canonical quadrature rule may be transformed using g(t) to obtain the error
term for the transformed quadrature rule.

Example 5.2. The simpson’s rule on [−1, 1] is
∫ 1

−1
f(x)dx =

1
3
f(−1) +

4
3
f(0) +

1
3
f(1).

with x!
0 = −1, x!

1 = 0, x!
2 = 1 and w!

0 = 1
3 , w!

1 = 4
3 , w!

2 = 1
3 . The simpson’s

rule on general interval [a, b],
∫ b

a
f(x)dx =

∑

i

wif(xi).

15



What are the xi and wi?
Solution: The linear transformation is from x! ∈ [−1, 1] to x ∈ [a, b] is

x = g(x!) =
b− a

2
x! +

a + b

2
.

Therefore, from equation (42) and (43), we have x0 = a, x1 = a+b
2 , x2 = b and

w0 = h
6 , w1 = 2h

3 , w2 = h
6 , assuming that b− a = h.

6 Gaussian Quadrature

The most popular choices for rules for numerical integration are the Gaussian
quadrature rules, for which the canonical interval is [−1, 1]; here,

I(f) ≡
∫ 1

−1
f(x)dx ≈

n∑

i=0

wif(xi) ≡ R(f),

where the all weights wi, i = 0, 1, · · · , n, and all the points xi, i = 0, 1, · · · , n,
are chosen to maximize the DOP. In the problems at the end of this section, you
are asked to find the weights and points in some simple Gaussian quadrature
rules. In reality, Gaussian rules with much larger numbers of points than in
these problems are used.

If the points x0, x1, · · · , xn were fixed arbitrarily, then, by analogy with those
rules that we have derived previously, with n + 1 free weights we would expect
DOP= n, or, in some cases, DOP=n + 1. But in the Gaussian quadrature rules
the points are chosen to increase the DOP to 2n + 1; that is, the Gaussian
quadrature rules are highly superconvergent. This should not be a surprise: the
Gaussian quadrature rule has a total of 2(n + 1) unknowns, taking the weights
and the points together, and it is plausible that they can be chosen to solve all
the 2(n + 1) equations of precision R(xk) = I(xk) for k = 0, 1, · · · , 2n + 1.

Theorem 6.1. Let q(x) be a nontrivial polynomial of degree n + 1 such that
∫ 1

−1
xkq(x)dx = 0, 0 ≤ k ≤ n.

Let x0, x1, · · · , xn be zeros of q(x). Then the formula
∫ 1

−1
f(x)dx ≈

∑

i

f(xi)wi,

where wi =
∫ 1
−1 li(x)dx with these xi’s as nodes will be exact for all polynomial

of degree at most 2n + 1. In other words, the DOP for the formula is 2n + 1.

Before we prove the Theorem, let us work through a couple of examples.
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Example 6.2. (n=0). q(x) is a linear function, q(x) = ax + b, and
∫ 1

−1
q(x)dx = 0,

therefore b = 0, and q(x) = ax, the zero of which is x0 = 0. Then the formula
∫ 1

−1
f(x)dx ≈ f(0)w0 = 2f(0),

is the mid-point rule and the DOP for the mid-point rule is 1(= 2n + 1).

Example 6.3. (n=1). q(x) is a quadratic function, q(x) = ax2 + bx + c, and
∫ 1

−1
q(x)dx =

∫ 1

−1
(ax2 + bx + c)dx =

ax3

3
|1−1 + 2c =

2a

3
+ 2c = 0

∫ 1

−1
q(x)xdx =

∫ 1

−1
(ax3 + bx2 + cx)dx =

2b

3
= 0

therefore q(x) = ax2 − a
3 = a(x2 − 1

3 ), the zero of which is x0 = − 1√
3

and
x1 = 1√

3
. Then the formula

∫ 1

−1
f(x)dx ≈ f(− 1√

3
)w0 + f(

1√
3
)w1.

To compute w0 and w1, as well as the DOP of the quadrature formula, we
use the DOP approach. Create a table listing the values of I(xj) and R(xj) for
j = 0, 1, 2, . . ..

j I(xj) R(xj)
0 2 w0 + w1

1 0 (−w0 + w1) 1√
3

2 2
3

1
3 (w0 + w1)

3 0 (−w0 + w1) 1
3
√

3

4 2
5

1
9 (w0 + w1)

From the first four equations, we know that w0 = w1 = 1 and the DOP for the
formula is 3(= 2n + 1). The order of approximation is O(h4).

Proof of Theorem 5.1. (see Theorem 1 in Chap 6.2 of the textbook ’Numer-
ical Mathematics and Computing’ by Cheney and Kincaid)

Two point and three point Gaussian quadrature rules. The following
table shows some cases of the Gaussian quadrature rules.

n Nodes xi Weights wi

1 −
√

1
3

√
1
3 1 1

2 −
√

3
5 0

√
3
5

5
9

8
9

5
9
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Example 6.4. Using the two point Gaussian quadrature rule, approximate the
integral

I =
∫ 1

0

dx

1 + x
.

The true value is I = log(2) ≈ 0.693147.
Solution: From Example 6.3, the two point Gaussian quadrature rule is

R(f) = f(x!
0)w

!
0 + f(x!

1)w
!
1 ≈

∫ 1

−1
f(x)dx,

with x!
0 = − 1√

3
, x!

1 = 1√
3
, w!

0 = w!
1 = 1.

By equation (43) and (42), the two point Gaussian quadrature rule for gen-
eral interval [a, b] is

R(f) = f(x0)w0 + f(x1)w1 ≈
∫ b

a
f(x)dx,

with x0 = − 1√
3

b−a
2 + b+a

2 , x1 = 1√
3

b−a
2 + b+a

2 , w0 = w1 = b−a
2 . Especially when

a = 0 and b = 1,

x0 =
1
2
(1− 1√

3
), x1 =

1
2
(1 +

1√
3
),

w0 = w1 =
1
2
.

Therefore,

R(f) = f(x0)w0 + f(x1)w1 =
1
2
(f(

1
2
(1− 1√

3
)) + f(

1
2
(1 +

1√
3
)))

Since
f(

1
2
(1− 1√

3
)) =

1
1 + 1

2 (1− 1√
3
)

=
1

3− 1√
3

f(
1
2
(1 +

1√
3
)) =

1
1 + 1

2 (1 + 1√
3
)

=
1

3 + 1√
3

,

R(f) =
1
2
(

1
3− 1√

3

+
1

3 + 1√
3

) = 9/13

This is in error by
9/13− log(2) ≈ 0.0008.

Compare with the error from the mid-point rule 0.0074 (one function evalua-
tion), from the Trapezoid rule 0.0152 (two function evaluations) and the Simp-
son’s rule 0.0013 (three function evaluations), the two point Gaussian quadra-
ture rule has the smallest error with only two function evaluations, indicating
the best efficiency.
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7 Properties of Gaussian quadrature rule (op-
tional reading-but very interesting)

Gauss rules have a number of interesting properties (some of which we will
derive subsequently). For each value of n ≥ 0, the (n + 1)–point Gauss rule has
the following properties:

(1) The DOP of the (n + 1)–point Gauss rule is 2n + 1.

(2) All of the weights wi are positive. (This guarantees the stability of the
rules; cf., the comment earlier concerning the weights in Newton-Cotes
rules for n ≥ 10.) (Addressed in Section 7.2)

(3) All of the points xi are real, distinct, and lie in the open interval (−1, 1).
(These points are the roots of a Legendre polynomial.) (Addressed in
Section 7.1)

(4) The points xi are placed symmetrically about the origin and the weights
wi are correspondingly symmetric. For n odd, the points satisfy x0 =
−xn, x1 = −xn−1, etc., and the weights satisfy w0 = wn, w1 = wn−1, etc.
For n even, the points and weights satisfy the same relations as for n odd
plus we have xn/2 = 0.

(5) The points xi of the n–point Gauss rule interlace the points xi of the
(n + 1)–point Gauss rule: −1 < x0 < x0 < x1 < x1 < x2 < · · · < xn−1 <
xn−1 < xn < 1.

(6) The Gauss rules are interpolatory quadrature rules; that is, after the points
x0, x1, · · · , xn have been determined, then the weights w0, w1, · · · , wn may
be computed by integrating over the interval [−1, 1] the polynomial of
degree n that interpolates the integrand f(x) at the points x0, x1, · · · , xn.

7.1 Legendre Polynomials: the nodes in Gaussian quadra-
ture rule.

From Theorem 6.1, it is known that the x′is are the roots for the polynomial
q(x), which is known as Legendre polynomials. The Legendre polynomial of
order k ≥ 0 is defined by

Lk(x) =
(−1)kk!
(2k)!

dk

dxk

[
(1− x2)k

]
, k = 0, 1, 2, . . . (44)

For example, for k = 0, 1, 2, 3, we have

L0(x) = 1, L1(x) = x, L2(x) = x2 − 1
3
, L3(x) = x3 − 3

5
x. (45)

Lemma 6.3.1 For any non-negative integers n and m, we have
∫ 1

−1
Ln(x)Lm(x)dx = 0, (46)

19



provided that n )= m.
Proof: Equation (46) is equivalent to

∫ 1

−1

dn

dxn

[
(1− x2)n

] dm

dxm

[
(1− x2)m

]
dx = 0. (47)

Since n )= m, without loss of generality, we may assume that n > m. Using
integration by parts n times, we can rewrite (47) as

(−1)n

∫ 1

−1
(1− x2)n dm+n

dxm+n

[
(1− x2)m

]
dx = 0, (48)

which is clearly true since n + m > 2m and 2m is the order of the polynomial
(1− x2)m.

Lemma 6.3.1 indicates that the Legendre polynomial Ln(x) is orthogonal to
all polynomials of degree ≤ n − 1. Mathematically, this orthogonality can be
expressed as ∫ 1

−1
Ln(x)xsdx = 0, s = 0, 1, · · · , n− 1. (49)

Lemma 6.3.2 The Legendre polynomial Ln(x) has no complex roots.
Proof: Suppose that Ln(x) has a complex root z0 = a+ ib for b )= 0. Then, the
conjugate of z0 is also a root of Ln(x). As a result, the Legendre polynomial of
Ln(x) can be written as

Ln(x) = q(x)[(x− a)2 + b2],

where q(x) is a polynomial of degree n − 2. The orthogonality property (49)
then implies that

0 =
∫ 1

−1
Ln(x)q(x)dx =

∫ 1

−1
q2(x)[(x− a)2 + b2]dx > 0,

which is a contradiction.

Lemma 6.3.3 The Legendre polynomial Ln(x) has n distinct roots x0, x1, · · · , xn−1,
which lie in the open interval (−1, 1).
Proof: We first show that all the (real) roots of Ln(x) lie in the open interval
(−1, 1). Suppose that x∗ is a real root of Ln(x) that does not belong to (−1, 1).
Without loss of generality, we may assume that x∗ ≤ −1. As a result, the
function g(x) = x− x∗ is non-negative in the interval [−1, 1]. Let pn−1(x) be a
polynomial of degree n− 1 such that

Ln(x) = pn−1(x)(x− x∗).

It follows that
∫ 1

−1
Ln(x)pn−1(x)dx =

∫ 1

−1
p2

n−1(x)(x− x∗)dx > 0.
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But the orthogonality property (49) claims that the left-hand side of the above
is equal to 0. Therefore, the assumption that Ln(x) has a root x∗ outside the
open interval (−1, 1) is incorrect.

Next we show that all the roots are simple. Assume, on the contrary, that
x∗ is a multiple root. It follows that

Ln(x) = pn−2(x)(x− x∗)2

for some polynomial pn−2(x) of degree n− 2. Thus, we have from (49)

0 =
∫ 1

−1
Ln(x)pn−2(x)dx =

∫ 1

−1
p2

n−2(x)(x− x∗)2dx > 0,

which is a contradiction.

7.2 The weights in Gaussian quadrature rules

The roots of the Legendre polynomials Ln(x) are called Gauss nodes of degree
n. As was shown in the previous section, these roots are real, distinct and lie
in the open interval (−1, 1). From (45), we see that the Gauss nodes of degree
1 comprise only one point, x0 = 0, the Gauss nodes of degree 2 are

x0 = −
√

1
3
, x1 =

√
1
3
,

and the Gauss nodes of degree 3 are

x0 = −
√

3
5
, x1 = 0, x2 =

√
3
5
.

The Gauss quadrature rules are interpolatory quadrature rules based on the
Gauss nodes (cf., Section 6.4.6). Let

x0, x1, · · · , xn

be the roots of Ln+1(x) and let f(x) be a continuous function defined on [−1, 1].
Let qn(x) be the polynomial interpolating f(x) at the Gauss nodes of degree
n + 1. Then, ∫ 1

−1
f(x)dx ≈

∫ 1

−1
qn(x)dx =

n∑

i=0

wif(xi),

where

wi =
∫ 1

−1
%(n)
i (x)dx, (50)

and

%(n)
i (x) =

n∏

j=0,j #=i

x− xj

xi − xj
,
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the Lagrange basis function corresponding to the node xi. Now,

%(n)
i (x) =

ωn+1(x)
(x− xi)ω′n+1(xi)

, (51)

where

ωn+1(x) =
n∏

j=0

(x− xi).

Thus, substituting (51) into (50) gives

wi =
1

ω′n+1(xi)

∫ 1

−1

ωn+1(x)
x− xi

dx, i = 0, 1, · · · , n.

Using this result, we can prove that the weights are positive.
Lemma 6.3.4 The weights, wi, in the Gauss quadrature rules are positive for
all i = 0, 1, · · · , n, and all n.
Proof: Since the Gauss quadrature rule with n+1 nodes has degree of precision
2n + 1, it yields the exact value for

∫ 1

−1
f(x)dx

when f(x) is any polynomial of degree 2n + 1 or less. In particular, it is exact
for

ri(x) =
ω2

n+1(x)
(x− xi)2

, i = 0, 1, · · · , n,

which are polynomials of degree 2n; that is,
∫ 1

−1
ri(x)dx =

n∑

k=0

wkri(xk). (52)

However, it is clear that

ri(xk) = 0, for k )= i,

(53)

ri(xi) =
n∏

j=0,j #=i

(xi − xj)2 = [ω′n(xi)]2 > 0.

Using (53) in (52) , we find that

wi =
1

ri(xi)

∫ 1

−1
ri(x)dx =

1
[ω′n+1(xi)]2

∫ 1

−1

ω2
n+1(x)

(x− xi)2
dx > 0,

which complete the proof.
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