POLYNOMIAL INTERPOLATION: ERROR ANALYSIS
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GOAL.
e To be able to plot the error function for visualization.

e To understand the error of polynomial interpolation.

1 The Error in Polynomial Interpolation

Let p,(x) be the polynomial of degree n interpolating the data
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Assume that the data is given by a function y = f(x) with the property that
yi = f(x;) and z; € [a,b] for i =0,1,--- ,n. The question that we consider here
is: how accurately does the polynomial p,(z) approzimate the function f(z) at
any point x?

2 An Example of the Error in Polynomial Inter-
polation

Let us look at an example of polynomial interpolation to gain some intuitive
understanding of its error. Consider the function

_ sin(3x)

143z

fi(z)

defined on the interval [a, b] = [0, 6]. This function is plotted in Fig. 1.
The polynomial ps(x) of degree 5 interpolating this function at the six
equally-spaced nodes:

is plotted in Fig. 2, and the interpolation error es(z) = fi(x) — ps(x) is plotted
in Fig. 3. It is clear that the error can be quite large and the corresponding
polynomial interpolation is not acceptable. However, if we use 13 equally-spaced
nodes to interpolate f; () with a polynomial p12(x) of degree 12, then the error is
plotted in Fig. 4. This new polynomial is much closer to the function f;(z) than
ps(x). In other words, it might appear that functions can be better interpolated
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Figure 1: Plot of fi(z) =sin(3z)/(1 + 3x).

by polynomials when more interpolation points are used.... but this is not always
the case as we shall see later in this chapter.

The following MATLAB scripts were used to generate the figures. First, we
need a MATLAB function to compute the coefficients in the Newton divided
difference interpolating polynomial. This is given as follows:

function c=divdif (x_nodes,f_values)

% To compute the coefficients c(1),...,c(n) in the Newton form:
% opx) =c() +x(2) (x—x(1)) + ... + c(n) x-x(1))...xx(n-1))

divdif_f= f_values;
n=length(x_nodes) ;
for i=2:n
for j =n:-1:1
divdif_f(j)=(divdif_£(j)-divdif_£(j-1)) ./(x_nodes(j)-x_nodes(j-i+1));
end
c(i)=divdif_£f(i);
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Figure 2: Plot of ps(x) from six equally-spaced nodes.

end

Next, we need to use nested multiplication to evaluate the Newton divided
difference interpolating polynomial. The following MATLAB function will do
this:

function pval=NestedM(c,x,z)
n=length(c);
pval = c(n)*ones(size(z));
for k=n-1:-1:1

pval= (z-x(k)).*pval+c(k);
end

To plot the polynomial and the error, we use the following in MATLAB:

>> xint=linspace(0,6,13);
>> yint=sin(3*xint)./(1+3*xint);
>> cint=divdif (xint,yint);
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Figure 3: Plot of the error es(z) = f1(z) — ps(z).
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Figure 4: Plot of the error eja(x) = f1(x) — p12().

xn=linspace(0, 6, 200);
pval=NestedM(cint, xint, xn);
plot(xn, pval);
wn=sin(3*xn) ./ (1+3*xn) ;
plot(xn, wn-pval);

plot(xn, wn-pval, xn, pval);

e The first two lines define the interpolation data (x;, f;) fori =1,2,...,13,
with z; = 0.5 % (i — 1).

e The third line computes the coefficients ¢; of the Newton divided difference
interpolating polynomial.

e The fourth line takes a sample of 200 points uniformly distributed on the
interval (0, 6); this is for plotting.

e The fifth line evaluates the Newton divided difference interpolating poly-
nomial at the 200 sample points, and the values are saved in the vector

pval().



e The sixth line plots the polynomial.

e The seventh line computes the value of the given function f(z) at the 200
sampling points.

e The eighth line plots the interpolation error.

e The last line plots both the error function and the interpolating polyno-
mial.

3 Error Estimates

Let the evaluation point be z and let all the nodes {x;}7 lie in a closed interval
[a,b]. Then, as we shall prove shortly, if the function f has n + 1 continuous
derivatives on the interval [a, b], the error expression takes the form

) = pnla) = P ), )

where
n

War1(@) = (2 = zo) (@ — 21) -+ (2 —aa) = [[ (= —ay),
j=0

and &, is some (unknown) point in the interval [a,b]. The precise location of
this point depends on {z;}7_,. Here f(**1)(¢,) is the (n+1)st derivative of f(z)
evaluated at the point z = &,.

To prove the desired error expression (1), note first that the result is trivially
true when z is any node x; since then both sides of the expression are zero.
Assume that x does not equal to any node and consider the function F(t) where

F(t) = f(t) — pn(t) — cwni1(t),

and
[f(z) — pn()]

wpr(z)
Observe that ¢ is well defined because wy,11(x) # 0 since x is not a node. Note
also that F'(z;) =0, 4 =0,...,n, and F(z) = 0. Thus F(¢) has at least
n+ 2 distinct zeros in [a, b]. Now invoke Mean Value theorem which states that
between any two zeros of F' there must occur a zero of F’. Thus, F’ has at least
n + 1 distinct zeros. By similar reasoning, F'' has at least n distinct zeros, and
so on. Finally, it can be inferred that F(™*1) must have at least one zero. Let
&, be a zero of F(*+1(¢). Thus we have

CcC =

(n+1)!

0= FO() = [V (E) = eln + Dt = J" () = s
n+

[f(z) = pu()],

since wf:_ﬁl)(t) = (n+ 1)!. The desired result (1) follows.

The following are some of the intrinsic properties of the interpolation error:



e For any value of ¢, the error is zero when = = x; because
wnﬂ(wi) = 0
(the interpolating conditions).

e The error is zero when the data f; are measurements of a polynomial f(z)
of exact degree n because then the (n + 1)st derivative,

(&),

is identically zero. This is simply a statement of the uniqueness theorem
of polynomial interpolation.

Taking absolute values in the interpolation error expression and maximizing
both sides of the resulting inequality over x € [a,b], we obtain the polynomial
interpolation error bound

max,ciqp | fOH) (@
o |£(@) - pa(@)] < mas fonga(a)] - Roeelen T (@)
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Therefore, we are left with estimating the terms on the right-hand side of this
inequality in order to characterize the error in polynomial interpolation.

4 FError Estimates for Uniformly Spaced Nodes

Consider the special case in which the points {z;}?_, are equally-spaced on an
interval [a, b]. Specifically, these points z; are deflned by

xi:a+1(bfa), i=0,1,--- ,n.
n

We would like to derive an estimate for the following term appearing in (2):

W = max |wp41(2)].
z€Ja,b]

To this end, we make the change of variable

(b—a)s

n

r=a-+

to rewrite wyy1(x) as

n b—a n+l n
Wnt1(z Ha:—x] ( " ) H(S—j)7

=0 §=0

where s € (0,n). Therefore, we have the following estimate:
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For any given s € (0,n), let ¢ be an integer such that ¢ < s < i+ 1. It follows

that -
[Tls—dl=ls=s—i=DITTIs =4l TT Is—il. (4)
j=0 3=0

j=i+2

and, since s < i+ 1,

[(s—i)(s—i—1)| < i, (please show this) (5)
i—1 i1
[Tls=dl<[lG+1-5) <@+ (6)
3=0 §=0

and, since s > i

I s=dil< I G- <@m— (7)

j=i+2 j=i+2
On substituting these three estimates, (5)—(7) into (4), we obtain

[T sl < 4! 5)
=0

On substituting (8) into (3), we obtain

n+1
W< (b_“> Lo
n 4

and with this bound in (2), we obtain the following estimate:

b—a n+1 1
. < (n+1) .
max 1) ) < (0) gt e 0@ @

Thus, if a function has ill-behaved higher derivatives, then the quality of the
polynomial interpolation may actually decrease as the degree of the polynomial
increases.

EXAMPLE 1: Consider f(z) = sin  and suppose values are known at three
equally-spaced nodes xg, 1, and 5. Then, from (1), the error in approximating
the function sin = by pa(z) is

T—x0)(x—x1)(x —T 1
1(@) — pata) =TI ZPIEZ22) gy ) = 2y 10 ),
If, for simplicity, we set xg = —h, 1 = 0, and x5 = h, then
|lws(z)| = |2° — h2x|.



The maximum of this function between zy and z9 occurs at x = +h/ V3 and
this maximum value is 273 /3+/3. (You may wish to verify this.) Moreover, since
f®)(x) = —cos z (recall that f(x) = sin x),

1F® (&) <1,

we obtain

V3
— z)| < —=h3.
_max |f(z) = pa(2)] < o
If, for example, we wish to obtain seven place accuracy using quadratic inter-

polation, we would have to choose h such that

V3
2Zp3<5-1078
TR

Hence h =~ 0.01.

EXAMPLE 2: Determine the spacing h in a table of equally spaced values of

the function
flz) =V

between 1 and 2, so that interpolation with a quadratic polynomial will yield
an accuracy of 5 x 1078,

Solution: By assumption, the table will contain f(z;), with ; = 1 +ih, i =
0,1,...,N,where N = (2—1)/h =1/h. If & € [x;—1, T;+1], then we approximate
f(Z) by p2(Z), where pa(x) is the quadratic polynomial which interpolates f(x)
at x;_1, ©;, ¢;y1. Then, from (1),

(T — 1) (T — 2)(T — Tig1)

i 1),

f(@) —pa(7) =

for some & € (z;_1,;41). Since we do not know £, we can only estimate f©)(¢),

()] < max |fO)(2)].

1<x<2

Since
FO (z) = 24502
8 b)

it follows that |f(®)(¢)| < 3. Further, from Example 1,

(@ = 2i)(E — 2)(F — wip)| < 2
max r — T;— T —T; )\ — X4 S —.
z€[wi_1,i41] ! 1 3\/§

We are now assured that, for any z € [1, 2],

h3
244/3’

3
|ﬂ@-m@ﬂ§i%xzx;:



if po(z) is chosen as the quadratic polynomial which interpolates f(z) = /x at
the three tabular points nearest .
For an accuracy of 5 x 10™8, we must choose h so that

3

24V/3
giving h =~ 0.01028 or N =~ 79.

<5x 1078,
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