
Iterative Solutions of Linear Systems

GOAL.

• Understand the norm of vectors and matrix

• Understand the conditional number of a matrix

• Understand, implement and analyze iterative methods

KEY WORDS. Condition number, iterative method, Jacobi method, Gauss-
Seidel method, successive over-relaxation (SOR) method

In the last Chapter, we have seen that Gaussian elimination is the most
general approach to solve a nonsingular linear system

Ax = b. (1)

The complexity of a Gaussian elimination (or with pivoting) procedure is of
order n3, where n is the size of the matrix. In this Chapter, we are exploring
a completely different strategy of solving eq. (1). This approach is often used
in enormous (of the sizes of hundreds or thousands of) systems arising from
science and engineering applications. Before we step into the methodology, we
need to introduce some basic concepts of vectors and matrix.

1 Norms of Vectors and Matrix

We first present the norm of vectors and matrix, because they are going to be
useful in the discussion of stability of the algorithm and in the stopping criteria,
convergence analysis of the iterative methods.

Definition 1.1. (Vector Norm) A vector norm ‖x‖ is any mapping from Rn to
R with the following three properties.

1. ‖x‖ > 0, if x 6= 0

2. ‖αx‖ = |α|‖x‖, for any α ∈ R

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖

for any vector x, y ∈ Rn.

Example 1.2. One of the most commonly used vector norms is the Euclidean
norm (or called l2 norm)

‖x‖2 = (
n∑
i=1

x2
i )

1/2 =
√

xT · x, l2 norm,

which can be understood intuitively as the length or magnitude of a vector
x ∈ Rn. The properties of the l2 norm can be interpreted as

1



1. positivity: the length of a vector is always greater than 0, unless it is a
zero vector

2. positive scalability: the length of the scalar product of a vector is the
length of the vector multiplied by the absolute value of the scalar.

3. triangular inequality: the length of one side of triangular is always smaller
than the sum of the length of the other two sides of a triangle.

Other examples of vector norms are l1 norm, l∞ norm,

‖x‖1 =
n∑
i=1

|xi|, l1 norm,

‖x‖∞ = max
1≤i≤n

|xi|, l∞ norm,

It can be checked by Definition 1.1 that the l1, l2, l∞ norm defined above are
vector norms. Below we use the l1 norm as an example.

Example 1.3. The l1 norm is a vector norm.
It suffices to check that

1. ‖x‖1 =
∑n
i=1 |xi| > 0, if x 6= 0

2. ‖αx‖ =
∑n
i=1 |αxi| = α

∑n
i=1 |xi| = |α|‖x‖, for any α ∈ R

3. ‖x + y‖ =
∑n
i=1 |xi + yi| ≤

∑n
i=1(|xi|+ |yi|) = ‖x‖+ ‖y‖.

Example 1.4. Let x = (1, 1, · · · , 1)1×n, then

‖x‖1 = n,

‖x‖2 =
√
n

‖x‖∞ = 1.

Definition 1.5. (Matrix Norm) A matrix norm of a matrix ‖A‖ is any mapping
from Rn×n to R with the following three properties.

1. ‖A‖ > 0, if A 6= 0

2. ‖αA‖ = |α|‖A‖, for any α ∈ R

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangular inequality)

for any matrix A, B ∈ Rn×n.

We usually prefer matrix norms that are related to a vector norm.

Definition 1.6. (subordinate matrix norm) The subordinate matrix norm based
on a vector norm ‖ · ‖ is given by

‖A‖ = sup{‖Ax‖ : x ∈ Rn and ‖x‖ = 1}
= sup

‖x‖=1

{‖Ax‖} (2)

2



It can be checked that the subordinate matrix norm defined by eq.(2) is a
norm.

1. ‖A‖ > 0, if A 6= 0

2.

‖αA‖ = sup
‖x‖=1

{‖αAx‖} = sup
‖x‖=1

{|α|‖Ax‖} = |α| sup
‖x‖=1

{‖Ax‖} = |α|‖A‖

3.

‖A+B‖ = sup
‖x‖=1

{‖(A+B)x‖} = sup
‖x‖=1

{‖Ax +Bx‖}

≤ sup
‖x‖=1

{‖Ax‖+ ‖Bx‖}

≤ sup
‖x‖=1

{‖Ax‖}+ sup
‖x‖=1

{‖Bx‖}

= ‖A‖+ ‖B‖

Why introduce subordinate matrix norms? Because of some additional prop-
erties that they enjoy,

•
‖I‖ = 1

•
‖Ax‖ ≤ ‖A‖‖x‖

•
‖AB‖ ≤ ‖A‖‖B‖

To derive them,

•
‖I‖ = sup

‖x‖=1

{‖Ix‖} = sup
‖x‖=1

{‖x‖} = 1

• – When ‖x‖ = 1, ‖A‖ = sup‖x‖=1{‖Ax‖} ≥ ‖Ax‖ ⇒ ‖A‖‖x‖ ≥
‖Ax‖

– When ‖x‖ = α 6= 1, let y = x
α , then ‖y‖ = 1, therefore

‖Ay‖ ≤ ‖A‖‖y‖ ⇒ α‖Ay‖ ≤ α‖A‖‖y‖ ⇒ ‖Aαy‖ ≤ ‖A‖‖αy‖ ⇒ ‖Ax‖ ≤ ‖A‖‖x‖

• Left as homework.

3



Examples of subordinate matrix norms for a matrix A, based on the l1, l2
and l∞ vector norms respectively, are

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |, l1 norm

‖A‖2 = max
1≤j≤n

σmax, l2 norm

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |, l∞ norm

where σi are the square root of eigenvalues of ATA, which are called the singular
values of A. σmax is the largest in absolute value among σi.

Example 1.7. Let the matrix A be(
1 2
3 4

)
then

‖A‖1 = 6,

‖A‖2 = 5.4650,

‖A‖∞ = 7.

To get ‖A‖2, use ‘eig(A’*A)’ in matlab to obtain σ2
1 , · · · , σ2

n, then pick the
largest one among all σi’s, σmax.

The formulas for l1, l2 and l∞ subordinate matrix norms can be derived by
using Definition 1.6. For example,

‖A‖2 = sup
‖x‖2=1

‖Ax‖2

= sup
‖x‖2=1

(xTATAx)
1
2

= sup
‖x‖2=1

(xTQTΛQx)
1
2 ,

y=Qx
= sup

‖y‖2=1

(yTΛy)
1
2 ,

= σmax. (3)

where QTΛQ is an eigenvalue decomposition of ATA, where Q is an unitary
matrix and Λ = diag(σ2

1 , · · · , σ2
n).

4



2 Condition number and stability

Definition 2.1. (Condition number) Condition number of a matrix indicates if
the solution of the linear system is sensitive to small changes. It turns out that
this sensitivity can be measured by the condition number defined as

κ(A) = ‖A‖2‖A−1‖2

To see condition number measures the sensitivity of the system, suppose
that we want to solve an invertible linear system of equations Ax = b. For
a given A and b, there may be some perturbations of the data owing to the
uncertainty in measurement or the roundoff errors in computers. Suppose that
the right hand side b is perturbed by δb and the corresponding solution to the
problem is perturbed by an amount denoted by δx. Then we have

A(x+ δx) = b+ δb,

where we have
Aδx = δb.

For the original linear system Ax = b, we have

‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖

which gives
1
‖x‖

≤ ‖A‖
‖b‖

. (4)

For the perturbed linear system Aδx = δb, we have δx = A−1δb and therefore

‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖‖δb‖ (5)

Combining eq.(4) and eq.(5) gives

‖δx‖
‖x‖

≤ ‖A‖‖A−1‖‖δb‖
‖b‖

= κ
‖δb‖
‖b‖

. (6)

Remark 2.2. ‖δb‖
‖b‖

is the relative perturbation we have on b, and ‖δx‖
‖x‖ is the

resulting relative perturbation we have on the solution x as a result of the
perturbation on b. Therefore the condition number of a matrix κ(A) measures
the sensitivity of the system to errors in data. When the condition number is
large, the computed solution of the system may be dangerously in error. Further
check should be made before accepting the solution as being accurate.

Remark 2.3. Condition number is always greater than 1. κ(A) = ‖A‖‖A−1‖ ≤
‖AA−1‖ = ‖I‖ = 1. Values of the condition number close to 1 indicate a well-
conditioned matrix whereas large values indicate an ill-conditioned matrix.

5



3 Basic iterative method

The iterative method produces a sequence of approximate solution vector x(0),
x(1), x(2), · · · ,x(k), · · · for system of equations Ax = b. The numerical pro-
cedure is designed such that, in principle, the sequence of approximate vectors
converge to the actual solution, and as rapidly as possible. The process could
be stop when the approximate solution is sufficiently close to the true solution
or close to each other. This is in contract with the Gaussian elimination, which
has no provisional solution. A general iterative procedure goes as follows:

1. Select a initial guess x(0).

2. Design an iterative procedure:

Qx(k) = (Q−A)x(k−1) + b,∀ k = 1, · · · (7)

To see that the iterative procedure eq.(7) actually is consistent with the original
Ax = b, we let k → ∞ and presume that the approximate sequence converges
to x, then we have

Qx = (Q−A)x + b

which leads to Ax = b. Thus, if the sequence converge, its limit is the solution
to the Ax = b.

To have a method that is efficient, we hope to have the Q satisfying the
following properties for the general iterative procedure (from eq. (7)),

1. Q is easy to invert.

2. The sequence x(k) will converge to x, no matter what the initial guess is.

3. The sequence x(k) converges to x as rapidly as possible.

In the following, we will introduce three iterative methods: Jacobi method,
the Gauss-Seidel method and the successive over-relaxation (SOR) method.

Jacobi method. Let’s first write the system of equations Ax = b in its
detailed form

n∑
j=1

aijxj = bi, 1 ≤ i ≤ n. (8)

In the kth iteration, we solve the ith equation for the ith unknown x(k)
i , assum-

ing that the other xj comes from the previous iteration x
(k−1)
j , we obtain an

equation that describes the Jacobi method:

i−1∑
j=1

aijx
(k−1)
j + aiix

(k)
i +

n∑
j=i+1

aijx
(k−1)
j = bi, 1 ≤ i ≤ n. (9)

or
n∑

j=1,j 6=i

aijx
(k−1)
j + aiix

(k)
i = bi, 1 ≤ i ≤ n. (10)

6



which could be rearranged as

x
(k)
i = (bi −

n∑
j=1,j 6=i

aijx
(k−1)
j )/aii

=
bi
aii
−

n∑
j=1,j 6=i

aij
aii

x
(k−1)
j . (11)

Here we assume that all diagonal entries are nonzero. If this is not the case, we
can usually rearrange the equation so that it is.

The equation (9) could be written in the following matrix form
a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

x(k) +


0 a12 · · · a1n

a21 0 · · · a2n

...
...

. . .
...

an1 an2 · · · 0

x(k−1) = b

If we decompose the matrix A as A = D−CL−CU , where D is the diagonal
part of A, CL is the negative lower triangular part of A and CU is the negative
upper triangular part of A,

D = diag(A), CL = (−aij)i>j , CU = (−aij)i<j ,

then the above matrix representation of Jacobi matrix is

Dx(k) + (A−D)x(k−1) = b.

Rearrange it a little bit, we have

Dx(k) = (D −A)x(k−1) + b,

in the form of eq.(7) with Q = D.

Example 3.1. (Jacobi iterative method) Let

A =

 2 −1 0
−1 3 −1
0 −1 2

 , b =

 1
8
−5

 .

Carry out a number of Jacobi iteration, starting with zero initial vector.
Solution: Rewriting the equation, we have

x
(k)
1 =

1
2
x

(k−1)
2 +

1
2

x
(k)
2 =

1
3
x

(k−1)
1 +

1
3
x

(k−1)
3 +

8
3

(12)

x
(k)
3 =

1
2
x

(k−1)
2 − 5

2
. (13)

7



Taking the initial vector to be x(0) = [0, 0, 0]′, we find that

x(1) = [0.5000, 2.6667,−2.500]′

x(2) = [1.8333, 2.0000,−1.1667]′

· · ·
x(21) = [2.0000, 3.0000,−1.0000]′

After 21 iterations, the actual solution is obtained within some fixed precision.
In the Jacobi method, the matrix Q is taken to be the diagonal part of A, 2 0 0

0 3 0
0 0 2


With this Q, we know that the Jacobi method could also be implemented as

x(k) = Bx(k−1) + h

with the Jacobi iterative matrix B and constant vector h are

B =

 0 1
2 0

1
3 0 1

3
0 1

2 0

 , h =

 1/2
8/3
−5/2

 .

Gauss-Seidel method. Let’s first write the system of equations Ax = b in its
detailed form

n∑
j=1

aijxj = bi, 1 ≤ i ≤ n.

In the Jacobi method, the equations are solved in order. When solving the ith
equation, the component x(k)

j (1 ≤ j < i) can be immediately in their place, and

is expected to be more accurate than x
(k−1)
j (1 ≤ j < i). Taking into account

of this, we obtain an equation that describes the Gauss-Seidel (GS) method:

i−1∑
j=1

aijx
(k)
j + aiix

(k)
i +

n∑
j=i+1

aijx
(k−1)
j = bi, 1 ≤ i ≤ n. (14)

which could be rearranged as

x
(k)
i = (bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j )/aii

=
bi
aii
−

i−1∑
j=1

aij
aii

x
(k)
j −

n∑
j=i+1

aij
aii

x
(k−1)
j (15)

Here we assume that all diagonal entries are nonzero. If this is not the case,
we can usually rearrange the equation so that it is. The equation (14) could be

8



written in the following matrix form
a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
an1 an2 · · · ann

x(k) +


0 a12 · · · a1n

0 0 · · · a2n

...
...

. . .
...

0 0 · · · 0

x(k−1) = b

Use the notation of decomposing A = D − CL − CU , then the above matrix
representation of GS matrix is

(D − CL)x(k) + (A−D + CL)x(k−1) = b.

Rearrange it a little bit, we have

(D − CL)x(k) = (D − CL −A)x(k−1) + b,

in the form of eq.(7) with Q = D − CL.

Example 3.2. (GS iterative method) Let A and b the same as in Example 3.1.
Carry out a number of GS iterations, starting with zero initial vector.
Solution: Rewriting the equation, we have

x
(k)
1 =

1
2
x

(k−1)
2 +

1
2

x
(k)
2 =

1
3
x

(k)
1 +

1
3
x

(k−1)
3 +

8
3

(16)

x
(k)
3 =

1
2
x

(k)
2 − 5

2
. (17)

Taking the initial vector to be x(0) = [0, 0, 0]′, we find that

x(1) = [0.5000, 2.8333,−1.0833]′

x(2) = [1.9167, 2.9444,−1.0278]′

· · ·
x(9) = [2.0000, 3.0000,−1.0000]′

After 9 iterations, the actual solution is obtained within some fixed precision.
In the GS method, the matrix Q is taken to be the lower triangular part of

A,  2 0 0
−1 3 0
0 −1 2


With this Q, we know that the GS method could also be implemented as

x(k) = Bx(k−1) + h

with the GS iterative matrix B and constant vector h are

B =

 0 1
2 0

0 1
6

1
3

0 1
12

1
6

 , h =

 1/2
17/6
−13/12

 . (18)

9



Successive Overrelaxation (SOR) method. Let’s first write the system of
equations Ax = b in its detailed form

n∑
j=1

aijxj = bi, 1 ≤ i ≤ n.

The idea of the SOR method is essentially the same as the GS method, except
that it also use x(k−1)

i to solve for x(k)
i . The algorithm is the following

i−1∑
j=1

aijx
(k)
j +aii(

1
w
x

(k)
i +(1− 1

w
)x(k−1)
i )+

n∑
j=i+1

aijx
(k−1)
j = bi, 1 ≤ i ≤ n. (19)

which could be rearranged as

x
(k)
i = w(bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j )/aii + (1− w)x(k−1)

i

= w(
bi
aii
−

i−1∑
j=1

aij
aii

x
(k)
j −

n∑
j=i+1

aij
aii

x
(k−1)
j ) + (1− w)x(k−1)

i (20)

Again we assume that all diagonal entries are nonzero. The equation (19) could
be written in the following matrix form

a11/w 0 · · · 0
a21 a22/w · · · 0
...

...
. . .

...
an1 an2 · · · ann/w

x(k)+


(1− 1

w )a11 a12 · · · a1n

0 (1− 1
w )a22 · · · a2n

...
...

. . .
...

0 0 · · · (1− 1
w )ann

x(k−1) = b

Use the notation of decomposing A = D − CL − CU , then the above matrix
representation of SOR matrix is

(D/w − CL)x(k) + (A−D/w + CL)x(k−1) = b.

Rearrange it a little bit, we have

(D/w − CL)x(k) = (D/w − CL −A)x(k−1) + b,

in the form of eq.(7) with Q = D/w − CL.

Example 3.3. (SOR iterative method) Let A and b the same as in Example
3.1. Carry out a number of SOR iterations with w = 1.1, starting with zero
initial vector.
Solution: Rewriting the equation, we have

x
(k)
1 = w(

1
2
x

(k−1)
2 +

1
2

) + (1− w)x(k−1)
1

x
(k)
2 = w(

1
3
x

(k)
1 +

1
3
x

(k−1)
3 +

8
3

) + (1− w)x(k−1)
2 (21)

x
(k)
3 = w(

1
2
x

(k)
2 − 5

2
) + (1− w)x(k−1)

3 . (22)

10



Taking the initial vector to be x(0) = [0, 0, 0]′, we find that

x(1) = [0.5500, 3.1350,−1.0257]′

x(2) = [2.2193, 3.0574,−0.9658]′

· · ·
x(7) = [2.0000, 3.0000,−1.0000]′

After 7 iterations, the actual solution is obtained within some fixed precision.
In the SOR method, the matrix Q is taken to be 2/w 0 0

−1 3/w 0
0 −1 2/w


With this Q, we know that the SOR(w) method could also be implemented as

x(k) = Bx(k−1) + h

with the SOR iterative matrix B and constant vector h are

B =

 −1/10 11/20 0
−11/300 61/600 11/30
−121/6000 −671/12000 61/600

 , h =

 11/20
627/200
−4103/4000

 .

(23)
with w = 1.1.

Remark 3.4. (Complexity analysis) In each of the iterative step in the methods
described above, the complexity is of order O(n2).

Remark 3.5. (Stopping criteria) The stopping criteria in the iterative methods
for solving Ax = b is to make sure that the distance, measure in norms, between
approximations are bounded by some prescribed tolerance,

‖x(k) − x(k−1)‖2 < ε,

where ε is the tolerance of the error.

4 Convergence of iterative methods

For the analysis of the method described by eq.(7), we write

x(k) = Q−1[(Q−A)x(k−1) + b]. (24)

11



Let the error at the kth iteration be e(k) = x− x(k). Let x mines both sides of
eq.(24), we have

e(k) = x−Q−1[(Q−A)x(k−1) + b]
= x− (I −Q−1A)x(k−1) −Q−1b

= x− x(k−1) +Q−1Ax(k−1) −Q−1b

= e(k−1) +Q−1Ax(k−1) −Q−1Ax

= e(k−1) +Q−1A(x(k−1) − x)
= e(k−1) −Q−1Ae(k−1)

= (I −Q−1A)e(k−1). (25)

We want to have e(k) to become smaller as we increase the k. The above
derivation shows that e(k) will be smaller than e(k−1) if I − Q−1A is small in
some sense. Indeed, from eq.(25), we have

‖e(k)‖ = ‖(I −Q−1A)e(k−1)‖
≤ ‖(I −Q−1A)‖‖e(k−1)‖. (26)

As can be seen from eq.(26), if ‖(I − Q−1A)‖ < 1, the error becomes smaller
and smaller as the iteration goes on, therefore the iterative method converges.
What is more, the smaller the ‖(I−Q−1A)‖ is, the faster convergence we would
expect. A very classical theorem about the convergence of the iterative method
is the following

Theorem 4.1. (Spectral Radius Theorem) In order that the sequence generated
by eq.(7) to converge, no matter what the starting point x(0) is selected, it is
necessary and sufficient that all eigenvalues of the matrix I −Q−1A lies in the
open unit disc, |z| < 1, in the complex plane.

The conclusion of the theorem can also be written as

ρ(I −Q−1A) < 1

where ρ is the spectral radius function of a matrix: for a n-by-n matrix A, with
eigenvalues λi, the

ρ(A) = max
i
{|λi|}

In Example 3.1, we have use Jacobi, GS and SOR method to iteratively solve
it. We have observed that they take 21, 9 and 7 iterations respectively to obtain
solutions within the same tolerance. Actually, this behavior could be predicted
by the eigenvalues of I −Q−1A.

Example 4.2. Determine whether the Jacobi, GS and SOR method will con-
verge for the matrix A and b in Example 3.1, no matter what the initial condition
is.

12



Solution: For the Jacobi method, we can easily compute the eigenvalues of the
relevant matrix I −Q−1A (the matrix B in Example 3.1). The steps are

det(B − λI) = det

 −λ 1/2 0
1/3 −λ 1/3
0 1/2 −λ

 = −λ3 +
1
3
λ = 0.

Solving for λ gives us the three eigenvalues are 0,±0.5774, all of which lies in
the open unit disk. Thus, the Jacobi method converges.

Similarly, for the GS method, the eigenvalues of the relevant matrix I−Q−1A
(the B from Example 3.2 eq.(18)) are determined by

det(B − λI) = det

 −λ 11/20 0
0 1/6− λ 1/3
0 1/12 1/6− λ

 = −λ(1/6− λ)2 +
1
36
λ = 0.

Solving for λ gives us the three eigenvalues are 0, 0, 0.3333. Thus, the GS method
converges.

Similarly, for the SOR method with w = 1.1, the eigenvalues of the relevant
matrix I −Q−1A (the B from Example 3.3 eq.(23)) are determined by

det(B − λI) = det

 −1/10− λ 11/20 0
−11/300 61/600− λ 11/30
−121/6000 671/12000 61/600− λ


= −1/1000 + 31/3000λ+ 31/3000λ2 − λ3 = 0.

Solving for λ gives us the three eigenvalues are ≈ 0.1200, 0.0833,−0.1000. Thus,
the SOR method converges.

Also from the magnitude of those eigenvalues, it is not surprise that the SOR
performs better than GS, then Jacobi, in terms of the efficiency.

13


